Q1.Small water waves are created in a ripple tank by a wooden bar. The wooden bar vib	rates
up and down hitting the surface of the water.	

The figure below shows a cross-section of the ripple tank and water.

(c) Describe how the wavelength of the water waves in a ripple tank can be measured accurately.

(1)

		(2)
		(2)
(d)	The speed of a wave is calculated using the following equation.	
	wave speed = frequency × wavelength	
	The water waves in a ripple tank have a wavelength of 1.2 cm and a frequency of 18.5 Hz.	
	How does the speed of these water waves compare to the typical speed of a person walking?	
		(4)
	(Total 8 m	arks)

Q2. (a) A student uses two pieces of equipment, **A** and **B**, to display a sound wave.

(i) Use words from the box to complete the sentence.

a loudspeaker	a microphone	an oscilloscope	a screen	
Δ is		and B is		
ΑΙΟ.		and D 10		 (2

(ii) Use words from the box to complete the sentence.

the amplitude	half the amplitude	the frequency	half the frequency		
	The distance x marks the sound wave.	ed on the diagram	measures	of	(1)
					(')

(iii) Complete the sentence.

		(2) (Total 6 marks)
	Explain this.	
	Astronauts in space cannot hear sounds from outside their spacesuits.	
(b)	There is no air in space.	

Q3. (a) Infra red radiation can be reflected, absorbed and transmitted by glass.

(1)

(ii) Complete the following sentence by drawing a ring around the correct word or phrase.

Theabsorbed infra red

does not change decreases

the temperature of the glass.

(b) **Two** of the following statements are true. **One** of the statements is false.

Tick (\mathbf{v}') the boxes next to the **two** true statements.

All objectsabsorb infra red radiation.	
Blacksurfaces are poor emitters of infra red radiation.	
A hot objectemits more infra red than a cooler object.	

(1)

(1)

Blacksurfaces are good reflectors of infra red radiation	on.
nange one word in this statement to make it true.	
rite down your new statement.	
	(Tot

Q4.(a) The diagram shows four sound waves, **J**, **K**, **L** and **M**, represented on an oscilloscope screen.

They are all drawn to the same scale.

(i) Which **two** of the waves have the same amplitude?

Wave and wave

(1)

(ii) Which of the waves would sound the loudest?

Wave

(1)

(2)

(iii) Only **one** of the waves is an ultrasound wave.

Which one is the ultrasound wave?

Wave

Give a reason for your answer.

.....

(b) The diagram shows ultrasound being used to examine the ligament inside the leg of a horse.

Use words from the box to complete the following sentences.

C	omputer	detector	transmitter

(2) (Total 6 marks)

- **Q5.** Ultrasound waves are very high frequency sound waves. They cannot be heard by humans.
 - (a) Ultrasound waves can be used to clean jewellery.

The jewellery is put into a container of cleaning fluid.

	Complete each sentence to explain how ultrasound can clean jewellery.	
	The ultrasound generator makes the molecules of the cleaning fluid	
	from the surface of the jewellery.	(2
		(2
(b)	Give a medical use for ultrasound.	
		(1
		•

(c) Ultrasound waves can be represented on the screen of a cathode ray oscilloscope (CRO).

The diagrams show three ultrasound waves. Each wave is represented on an identical CRO screen, ${\bf A},\,{\bf B}$ and ${\bf C}.$

Q6.(a) The table gives information about the frequencies in the hearing ranges of six different mammals.

Name of mammal	Frequencies in hearing range
Bat	20 Hz → 160 kHz
Dog	20 Hz → 30 kHz
Dolphin	40 Hz → 110 kHz
Elephant	5 Hz → 10 kHz
Human	20 Hz → 20 kHz
Tiger	30 Hz → 50 kHz

(i)	Which mammal in the table can hear the highest frequency?		
		(1)	

(ii) Give **one** example of a frequency which an elephant can hear but which a tiger **cannot** hear.

Include the unit in your answer.

Frequency(1)

(b) A sound wave can be represented as a trace on the screen of an oscilloscope.

The diagrams show five traces, **A**, **B**, **C**, **D** and **E**, on the oscilloscope. All the traces aredrawn to the same scale.

(i) Which **three** diagrams show traces with the same amplitude?

Diagrams and

	(ii)	Which two diagrams show traces with the same frequency?	
		Diagrams and	(1)
(c)	The	re is no air in space.	
	Astro	onauts in space cannot hear sounds from outside their spacesuits.	
	Expl	lain this.	
			(2) (Total 6 marks)

Q7.(a) Diagram 1 shows two waves.

Diagram 1

- (i) Name **one** wave quantity that is the same for the two waves.

 (1)
- (ii) Name **one** wave quantity that is different for the two waves.

 (1)
- (iii) The waves in **Diagram 1** are transverse.Which **one** of the following types of wave is **not** a transverse wave?Draw a ring around the correct answer.

gamma rays sound visible light

(1)

(b) **Diagram 2** shows water waves in a ripple tank moving towards and passing through a gap in a barrier.

Diagram 2

Every second, 8 waves pass through the gap in the barrier. The waves have a wavelength of $0.015\ metres$.

Calculate the speed of the water waves and give the unit.
Speed =
(3) (Total 6 marks)

Q8.Figure 1 shows a set of tuning forks.

direction

A tuning fork has a handle and two prongs. It is made from metal.

loudness

When the prongs are struck on a hard object, the tuning fork makes a sound wave with a single frequency. The frequency depends on the length of the prongs.

pitch

The amplitude of a sound wave determines its

(a) Use the correct answer from the box to complete each sentence.

The frequency of a sound wave determines its	

speed

(2)

(b) Each tuning fork has its frequency engraved on it. A student measured the length of the prongs for each tuning fork.

Some of her data is shown in the table.

Frequency in hertz	Length of prongs in cm
320	9.5
384	8.7
480	7.8
512	7.5

(i) Describe the pattern shown in the table.

ii)	Figure 2 shows a full-size drawing of a tuning fork.
	Figure 2
	Length of prongs
	Measure and record the length of the prongs.
	Length of prongs = cm
	Use the data in the table above to estimate the frequency of the tuning fork in
	Use the data in the table above to estimate the frequency of the tuning fork in Figure 2 . Explain your answer.
	Figure 2.
	Figure 2. Explain your answer.
Ultr	Figure 2. Explain your answer.
Ultr (i)	Estimated frequency =

(ii)	The frequency of an ultrasound wave used in a hospital is 2 × 10 ^s Hz.				
	It is not possible to produce ultrasound waves of this frequency using a tuning fork.				
	Explain why.				

(d) **Figure 3** shows a tuning fork and a microphone. The microphone is connected to an oscilloscope.

Figure 3

© Sciencephotos/Alamy

(2)

When the tuning fork is struck and then placed in front of the microphone, a trace appears on the oscilloscope screen.

Figure 4 shows part of the trace on the screen.

Figure 4

Each horizontal division in Figure 4 represents a time of 0.0005 s.

What is the frequency of the tuning fork?	
Frequency =Hz	(3)
(**	Total 13 marks)